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Abstract. We analysed the ground-state energy of some dimerized spin-1/2 transverse XX and
Heisenberg chains with Dzyaloshinskii–Moriya (DM) interaction to study the influence of the latter
interaction on the spin–Peierls instability. We found that DM interaction may act either in favour of
the dimerization or against it. The actual result depends on the dependence of the DM interaction on
the distortion amplitude in comparison with such dependence for the isotropic exchange interaction.

The spin–Peierls instability is known as a magnetic analogue of the conventional Peierls
instability in electron–phonon systems. A uniform quantum spin chain at low temperatures
may become unstable towards dimerization owing to the interaction with lattice degrees of
freedom. This occurs because the dimerized lattice distortion lowers the magnetic energy
by a greater amount than the increase in the elastic energy due to deformation. Starting in
the 1970s with organic compounds exhibiting spin–Peierls transition, the interest in the spin–
Peierls instability of quantum spin chains was renewed with the discovery of the inorganic
spin–Peierls compound CuGeO3 in 1993 [1, 2]. To model appropriately the spin degrees of
freedom of the spin–Peierls compounds, the pure Heisenberg chain as well as its modifications,
which include frustration or interchain interaction, are considered. As a rule, since those models
represent quantum many-body systems, only approximate results can be obtained. However,
some generic features of the spin–Peierls systems can be illustrated in a simplified but exactly
solvable quantum spin model, namely, the transverse XX chain [3–6].

In the present paper we discuss the influence of the Dzyaloshinskii–Moriya (DM)
interaction [7] on the spin–Peierls dimerization in the adiabatic limit. The presence of DM
interaction for CuGeO3 was proposed in references [8–10] in order to explain the EPR and
ESR experimental data. The structure of the DM interaction in the cuprates was examined in
references [11,12]. The influence of this interaction on the ground-state properties of the one-
dimensional and two-dimensional Heisenberg models was studied in references [13–15]. Also,
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the multisublattice transverse XX chain with DM interaction was introduced in reference [16];
however, the spin–Peierls instability was discussed only for one limiting case (see below) in
the absence of an external field. DM interaction was found to be present in a number of
quasi-one-dimensional magnets (see, e.g., [17, 18] and also [19] in which RbCoCl3·2H2O is
described as a pure DM chain) and a study of one-dimensional DM Hamiltonians seems to be
of great importance.

Several mechanisms which may destroy the dimerized phase in the Heisenberg chain
were discussed in the literature—in particular, an external field or an Ising anisotropy. XX

anisotropy also suppresses the dimerized phase although it does not destroy it completely.
Therefore, initially one may expect that the appearance of an anisotropy in the form of the DM
interaction could act against dimerization. Although we shall find that the Heisenberg chain,
with increase of the DM interaction, may become similar to the XX chain, both enhancement
and suppression of the dimerized phase are possible, depending on the details of the distortion
dependence of the DM interaction.

In our study we follow the idea of reference [3] and compare the total ground-state energies
of the dimerized and uniform chains in the presence of DM interaction. First we demonstrate
that in some cases the DM interaction can be eliminated by a spin coordinate transformation
resulting in a model with an anisotropic exchange interaction. This observation permits us to
study rigorously the influence of DM interaction on the spin–Peierls instability in the transverse
XX chain using the exact results for thermodynamic quantities of the regularly alternating
transverseXX chain obtained recently with the help of continued fractions [20]. (The approach
exploiting continued fractions, in contrast to the approaches used in previous works [3–6,16],
allows one to consider in a similar way not only the dimerized lattice but also more complicated
lattice distortions.) Further, we discuss the case of the Heisenberg chain with DM interaction
using exact diagonalization of finite chains. The exact analytical findings for the XX chain
are helpful for the interpretation of the finite-chain results for the more realistic Heisenberg
chain. In the present study we are interested in describing the generic features originated by
DM interaction, and therefore no compound-specific parameters are considered.

To begin with, we consider a nonuniform chain of N → ∞ spins 1
2 governed by the

isotropic Heisenberg Hamiltonian with DM interaction

H =
∑
n

�ns
z
n +

∑
n

(Jn(sn · sn+1) + Dn · [sn × sn+1]). (1)

Here�n is an external field at siten, andJn and Dn are the isotropic exchange interaction and the
antisymmetric anisotropic exchange interaction or DM interaction between the neighbouring
sites n and n + 1, respectively.

Extending the spin coordinate transformation used in reference [21] for models with
nonuniform Jn and Dn, first we show how the terms with cross products can be eliminated from
Hamiltonian (1) in special cases. If Dn has only one nonzero component Dz

n, one may perform
local rotations about the z-axis, introducing the new spin operators sxn

′ = sxn cosφn + s
y
n sin φn,

s
y
n

′ = −sxn sin φn + s
y
n cosφn, φn = ϕ1 + · · · + ϕn−1, tan ϕm = Dz

m/Jm in terms of which (1)
becomes [22]

H =
∑
n

�ns
z
n
′ +

∑
n

(√
J 2
n + Dz

n
2
(sxn

′
sxn+1

′ + syn
′
s
y

n+1
′
) + Jns

z
n
′
szn+1

′)
. (2)

Note that such transformation can be also applied to the transverse XX chain in which the spin
z-components do not interact. Assume further that Dn has only one nonzero component Dx

n .
Then the local rotations must be performed about the x-axis, i.e. syn

′ = s
y
n cosφn + szn sin φn,
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szn
′ = −s

y
n sin φn + szn cosφn with tan ϕm = Dx

m/Jm, resulting in

H =
∑
n

�n(sin φns
y
n

′ + cosφns
z
n
′
) +

∑
n

(
Jns

x
n

′
sxn+1

′ +
√
J 2
n + Dx

n
2(syn

′
s
y

n+1
′ + szn

′
szn+1

′
)
)
. (3)

Proceeding similarly for Dn = (0,Dy
n, 0), one finds that the transformed Hamiltonian is given

by (3) with the replacements Dx
n → D

y
n , sx ′ → sy ′, sy ′ → −sx ′. In the case where Dn

has more than one nonzero component, the above-described elimination can be performed
if the orientation of Dn (but not necessarily its value Dn = √

[Dx
n

2 + D
y
n

2 + Dz
n

2]) is site
independent, i.e. Dx

n/Dn, Dy
n/Dn, Dz

n/Dn do not depend on n. (Obviously, the particular
site-independent orientations of Dn reproduce the cases discussed above.) Really, in such a
case we start from the global transformation of the coordinate system with the Eulerian angles
φ, θ , ψ , putting tan φ = D

y
n/D

x
n , θ = π/2, tan ψ = Dz

n/
√

[Dx
n

2 + D
y
n

2], and then perform the
above-mentioned local rotations about the x-axis with tan ϕm = Dm/Jm, finding as a result

H =
∑
n

�n

(
Dz

n

Dn

sxn
′ +

√
Dx

n
2 + D

y
n

2

Dn

(cosφns
y
n

′ − sin φns
z
n
′
)

)

+
∑
n

(
Jns

x
n

′
sxn+1

′ +
√
J 2
n + Dn

2(syn
′
s
y

n+1
′ + szn

′
szn+1

′
)
)
. (4)

It should be noted that the above-described transformations were applied to open chains. For
cyclic chains, they yield the above-presented expressions (2)–(4) at least up to the boundary
term. Evidently, the thermodynamic properties of the initial and transformed Hamiltonians
are identical. Due to these transformations (equations (2)–(4)), one is able to exploit the broad
knowledge on anisotropic Heisenberg chains and XX chains. In what follows we shall use the
thermodynamic equivalence of the initial and transformed Hamiltonians both in the analytical
treatment and in the numerical computations.

We proceed by considering the transverse XX chain with DM interaction having only a
z-component:

H =
∑
n

�ns
z
n +

∑
n

Jn(s
x
n s

x
n+1 + syn s

y

n+1) +
∑
n

Dz
n(s

x
n s

y

n+1 − syn s
x
n+1). (5)

For the Hamiltonian (5) we are able to perform rigorous analytical calculations, since
after the Jordan–Wigner transformation it reduces to noninteracting spinless fermions. As
has been already mentioned, the thermodynamics of the model given by (5) is the same
as that of the transverse XX chain (without DM interaction) with exchange interaction√

[J 2
n + Dz

n
2]. The thermodynamic properties of the latter model with regular alternation

in bonds and fields having finite period p have been examined recently with the help of
continued fractions [20]. To study the spin–Peierls dimerization in the adiabatic limit we
need the ground-state energy of a spin chain with period p = 2, i.e. with the sequence
of parameters �1J1D

z
1�2J2D

z
2�1J1D

z
1�2J2D

z
2 · · ·. Moreover, we assume the following

reasonable dimerization ansatz: J1 = J (1 + δ), J2 = J (1 − δ), Dz
1 = Dz(1 + kδ),

Dz
2 = Dz(1 − kδ), where 0 � δ � 1 is the dimerization parameter. It is argued that the

directions of D-vectors are not changed by the dimerization [10]†. From reference [7] we
know that the dependences on the intersite distance of the isotropic exchange interaction and
DM interaction may be different. This effect is described by the parameter k. Putting k = 0,
one has a chain in which Dz does not depend on the lattice distortion, whereas for k = 1,
the dependence of Dz on the lattice distortion is the same as that for the isotropic exchange

† Note, however, that according to references [8, 10], D-vectors in CuGeO3 are parallel to one another along the
a-axis and they are alternating along the b-axis.



8664 O Derzhko et al

interaction J . The latter case with �n = 0 was considered in [16]. Also, we bear in mind that,
as a rule, the value of the DM interaction is significantly smaller than the value of the isotropic
exchange interaction [7].

Further, we consider the case of zero temperature and look for the total energy per site E(δ)
which consists of the magnetic part e0(δ) and the elastic part αδ2, α > 0. From reference [20]
we know the exact expression for the magnetic ground-state energy:

e0(δ) = − 1

π
b1E

(
ψ,

b2
1 − b2

2

b2
1

)
− 1

2
|�1 + �2|

(
1

2
− ψ

π

)
(6)

b1,2 = 1

2

√
(�1 − �2)2 + (I1 ± I2)2

I1,2 =
√
J 2(1 ± δ)2 + Dz2(1 ± kδ)2

ψ =




0 if b1 � 1
2 |�1 + �2|

arcsin

√
b2

1 − 1
4 (�1 + �2)2

b2
1 − b2

2

if b2 � 1
2 |�1 + �2| < b1

π

2
if 1

2 |�1 + �2| < b2

where

E(ψ, a2) ≡
∫ ψ

0
dφ

√
1 − a2 sin2 φ

is the elliptic integral of the second kind. We also seek for a nonzero solution δ 
= 0 of the
equation ∂E(δ)/∂δ = 0 that can be easily derived from (6). In what follows we consider the
case of a uniform transverse field �1 = �2 = �0 � 0. In the limit δ � 1 valid for hard
lattices (having large values of α and corresponding to the experimental situation), one finds
b1 = I , b2 = Iℵδ with I = √

[J 2 + Dz2] and

ℵ = J 2 + kDz2

J 2 + Dz2 .

Instead of equation (6), one then has

e0(δ) = − I

π
E(ψ, 1 − ℵ2δ2) − �0

(
1

2
− ψ

π

)
(7)

ψ =




0 if I < �0

arcsin

√
I 2 − �2

0

I 2(1 − ℵ2δ2)
if Iℵδ � �0 < I

π

2
if �0 < Iℵδ

whereas the equation for δ reads

2πα

I
= ℵ2

1 − ℵ2δ 2 (F(ψ, 1 − ℵ2δ 
2
) − E(ψ, 1 − ℵ2δ 

2
)) (8)

where

F(ψ, a2) ≡
∫ ψ

0

dφ√
1 − a2 sin2 φ

is the elliptic integral of the first kind.
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Consider at first the case �0 = 0. After rescaling: I → J , α/ℵ2 → α, ℵδ → δ , one
finds that equation (8) is exactly the same as that considered in reference [3], and thus

δ ∼ 1

ℵ exp

(
−2πα

Iℵ2

)
.

Thus for k = 1 (ℵ = 1), nonzero Dz leads to an increasing of the dimerization parameter
δ , whereas for k = 0 (ℵ � 1), nonzero Dz leads to a decreasing of δ . Let us pass to the
case 0 < �0 < I . Varying δ in the r.h.s. of equation (8) from 0 to 1, one calculates a lattice
parameter α for which the value taken for δ realizes an extremum of E(δ), equation (7). One
immediately observes that for �0/(Iℵ) � δ , the dependence of α versus δ remains the same
as that in the absence of the field, whereas for 0 � δ < �0/(Iℵ) the calculated quantity α

starts to decrease. From this, one concludes that the field

�0

I
= exp

(
−2πα

Iℵ2

)
makes the dimerization unstable against the uniform phase. The latter relation tells us that
nonzero Dz increases the value of that field for k = 1 and decreases it for k = 0. It is
known [2] that the increasing of the external field leads to a transition from the dimerized
phase to the incommensurate phase rather than to the uniform phase. However, the former
phase cannot appear within the framework of the adopted ansatz for the lattice distortions
δ1δ2δ1δ2 · · ·, δ1 + δ2 = 0.

Following on from the discussion of the limit δ � 1, we now present the results for
arbitrary 0 � δ � 1 based on (6). In figures 1, 2 we plot the changes of the total energy
E(δ)− E(0), equation (6), versus δ and the nonzero solution δ of the equation ∂E(δ)/∂δ = 0
versus α, respectively, for various strengths of DM interaction. These results confirm that for
k = 1, the DM interaction Dz acts in favour of dimerization, whereas for k = 0 it acts against
it. To understand the validity of the data obtained by exact diagonalization of finite chains

-0.01

0

0.0 0.2 δ

ε(δ)−ε(0)  

1

2

3

4

5

1
2

3

4

5

1

Figure 1. The dependence of E(δ) − E(0), equation (6), versus δ for the transverse XX chain
with DM interaction. J = 2, �0 = 0, α = 0.8, Dz = 0 (curve 1), Dz = 0.4, 0.8 for k = 1
(curves 2 and 3, respectively), and k = 0 (curves 4 and 5, respectively). Solid curves correspond to
analytical calculations (N → ∞), whereas dotted ones correspond to exact-diagonalization results
(N = 24). The dashed curve corresponds to the numerical results for N = 28.
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1 2 345

Figure 2. The dependence of δ versus α for the transverse XX chain with DM interaction. J = 2,
α = 0.8, �0 = 0 (a), �0 = 0.2 (b), Dz = 0 (curve 1), Dz = 0.4, 0.8 for k = 1 (curves 2 and 3,
respectively), and k = 0 (curves 4 and 5, respectively).

that will be used below for the Heisenberg chain, we present in figure 1 also the numerical
results for E(δ) − E(0) versus δ for N = 24 spins (open boundary conditions). Note that
although the finite-chain results for N = 24 still noticeably overestimate the value of δ and
the depth E(δ )−E(0), they nonetheless—and this is most important—reproduce qualitatively
correctly the influence of Dz in both cases k = 1 and k = 0. The possible influences of Dz are
reproduced correctly even for shorter chains of N = 16, 20 spins. Moreover, with increasing
the chain length from N = 16 to 24, the numerical data approach the analytical ones valid for
N → ∞. This expected tendency can also be seen by comparison of curves 1 for N = 24,
N = 28 (the computation in this case has already become very time consuming) and N → ∞
in figure 1.

Let us turn to the Heisenberg chain with DM interaction. Assume that the vectors Dn have
the same orientation at all sites, e.g. in the z-direction. (The assumption that Dn = (0, 0,Dz

n)

does not lead to a loss of generality if �0 = 0.) In such a case, the influence of DM
interaction on the thermodynamics follows from a study of the thermodynamic properties
of the Heisenberg chain with anisotropic exchange interaction (2). We immediately find the
appearance of XX anisotropy, since the interaction between the x- and y-components of the
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spin becomes
√

[J 2(1 ± δ)2 + D2(1 ± kδ)2] (≈{√[J 2 + D2]}(1 ± ℵδ) for δ � 1), whereas
between the spin z-components it remains J (1 ± δ). Restricting consideration to small δ, we
perform the redefinitions

√
[J 2 + D2] = J ′, ℵδ = δ′, α/ℵ2 = α′. As a result we come to

the anisotropic alternating Heisenberg chain with xx and yy interactions J ′(1 ± δ′) and zz

interaction J ′"(1 ± δ′/ℵ), " = J/
√

[J 2 + D2] and the expression for the elastic energy per
site α′δ′2. Any increase of D results in an increasing of the intersite coupling J ′ and increasing
of the XX anisotropy manifested by " going from 1 (D = 0) to 0 (D → ∞). Hence, the
Heisenberg chain should start to exhibit a behaviour inherent to the XX chain as D becomes
large. Omitting the role of a change in the zz interaction, which becomes less important as D
increases, and bearing in mind the corresponding analysis for the XX chain based on (8), we
may expect that for �0 = 0 the dimerized phase will be enhanced for k = 1 (since α′ = α)
and will be suppressed for k = 0 (since α′ > α). The numerical results for E(δ)− E(0) versus
δ for the Heisenberg chain of N = 24 sites (open boundary conditions) shown in figure 3
confirm this expectation. As can be seen from the plots displayed, the general tendency for
the changes caused by DM interaction is the same for XX and Heisenberg chains.

-0.05

0

0.2 0.4 δ

ε(δ)−ε(0)  

1
2

3

4

5

Figure 3. The dependence of E(δ) − E(0) versus δ for the Heisenberg chain with DM interaction
obtained by exact diagonalization of finite chains. J = 2, �0 = 0, α = 0.8, D = 0 (curve 1),
D = 0.4, 0.8 for k = 1 (curves 2 and 3, respectively), and k = 0 (curves 4 and 5, respectively).
We also plotted the dependence E(δ)− E(0) versus δ for the corresponding XX chain with D = 0
(i.e. curves 1 in figure 1) obtained by analytical calculation for N → ∞ (dashed curve) and
numerical computation for N = 24 (dotted curve).

To conclude, we have examined the stability of some spin- 1
2 transverseXX and Heisenberg

chains with respect to dimerization in the presence of DM interaction, analysing the dependence
of the ground-state energy on the dimerization parameter. If the orientations of Dn are the
same at all sites, significant simplification occurs, i.e. the terms with cross products can be
eliminated from the Hamiltonian resulting in the appearance of the anisotropy in the exchange
interaction. In addition, the external field becomes more complicated, having three site-
dependent components (see (4)). The transformed Hamiltonian may be more transparent
and convenient for further analytical or numerical treatment. For the transverse XX chain,
we have found that DM interaction having only a z-component may act either in favour of
the dimerization or against it. The result of its influence depends on the dependence of the
DM interaction on the amplitude of the lattice distortion in comparison with a corresponding
dependence of the isotropic exchange interaction. For the Heisenberg chain, DM interaction
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having the same orientation at all sites leads to XX anisotropy (and extra nonuniform on-site
fields in the presence of an external field). For the Heisenberg chain without a field, we have
observed qualitatively the same behaviour as in the XX chain determined by the dependence
of the DM interaction on the lattice distortion.
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